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ABSTRACT

This paper describes the application of a neural computational network model to the pattern recog-
wition and classification of acrodynamic particle size distributions associated with a number of environmental,
bacterial, and artificial acrosols. The acrodynamic particle size distributions are measured in real-time with
high resolution using a two-spot He-Ne laser velocimeter. The technique employed here for the recognition
and classification of acrosols of unknown origin is based on a three-layered neural network that has been
trained on a training set consisting of 75 particle size distributions obtained from three distinct types of
acrnsols. The training of the neural network was accomplished with the back-propagation learning algo-
rithim. The effects of the number of processing units in the hidden layer and the level of noise corrupting
the training set, the test set, and the connection weights on the learning rate and classification cHiciency of
the neural network are studied. The ability of the trained network to generalize from the finite number of
size distributions in the training set to unknown size distributions obtained from uncertain and unfamiliar
enviromments is investigated. The approach offers the opportunity of recognizing, classifying, and charac-

»
terizing aerosol particles in real-time according to their aerodynamic particle size spectrum and its high
recognition accuracy shows considerable promise for applications to rapid real-time air monitoriug in the

areas of occupational health and air pollution standards.
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EXECUTIVE SUMMARY

I recent years, the military's concern with the enemy use of classieal biological ageuts ns well as
the newly emerging mid-spectrum agents (which will all be disseminated as solid acrosols) has led to consid-
erable rescarch efforts in the development of acrosol detectors and sensors capable of rapidly i(lcntifyi:ng and

i
classifying pathogenic acrosols. This paper analyzes and develops a relatively new approach to the a_(lubtivc
recognition and classification of various types of euviromuental, bacterial and artificial acrosols thal s l;nsml
on an integrated measurement and computational environment involving the use of an f\crodynmnic. Yarticle
Size Aunalyzer for the real-time and high ré‘s‘ol}m.iou measurement of acrodynamic particle size distributions
interfaced with o [eed-forward neural network for the adaptive pattern recognition and classification of the
observed particle size spectra. The neural network is a computational paradigm based on the concept that
b m:msﬁ’cly parallel network ol elemental processors (i.c., artificial nenral units) arranged in a manuer rem-
iiscent of biological neural nets might be able to learn to recognize and classify patterns in an autonomous
Imanner.

In this paper, it is shown that a fully interconneeted three-layered neural network (48 input nenrons,
a variable number of hidden neurons, and 2 output neurons) with nonlinear sigmoid units for thresholding
can be trained with the standard back-propagation learning algorithm using a training set consisting of 25
particle size distribution functions from each of three classes of acrosols (one atmospheric and twoi latex
particle standards). It was found that a recognition rate of 100 percent can be obtained for the training sct
using neural networks with three or more hidden neurons. Experiments conducted to study the performance
characteristics of the neural network as a function of the quality of data used for the training and test sets
amd of inclusion ol random noise in the connection strengths of the trained network showed that the neural
network can function as a very lault-tolerant pattern recognition and classification system. Furthermore, it
was shown that a fully trained nenral network can be used to form reliable generalizations Lo particle size
distributions that it has never “seen”™. In this regard, it was demonstrated that the trained nc:work was
capable of grouping particle size distributions of unknown type into similar categories for the case where the
nuinber of cluster categories was unknown a priore.

Although the present work has focussed exclustvely on the coupling of the neural network paradigin
to an Acrodynamic Particle Sizer for acrosol identification, it only represents but one possllnhly for the
recognition and classification of acrosols. It would be desirable to investigate the coupling or adaptive
pattern recognition and classification systems based on neural networks (implemented cither as software
stunilations or as clectronic and/or opmnl hardware) with detection methods that provide an optimum
sensthivity and specificity for the detetction mul quantitalive evaluation of the chemical or biological agent.
In this regard, it might be uscful to investigate the application of neural networks to the adaptive recognition
and classification of chemical agents (vapors) and of biological agents (biological components in acrosols)

Lased on ion mobility spectrometry and pyrolysis mass spectrometry, respectively,
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I. INTRODUCTION

The extraction of features from patterns and waveforms is important in a number of pattern
recognition applications spanning a range of different scientific disciplines such as image and scene analysis,
computer vision, speech and character recognition, biological taxonomy and medical diagnosis, radar and
sonar target recognition and classification, robotics and remote manipulators, and scismic data analysis. The
design of an optimal classifier for these patterns and waveforms invariably requires kunowledge of the statisties
of the signal and noise processes and, with regard to the latter aspect, the performance of the classifer is
dependent on how well these statistics have been characterized. Ilowever, in most practical applications,
the statistics of the signal and noise processes are either not known or have been wrongly assumed to
possess certain characteristics. Uncertainties, introduced as the result of unknown noise processes and/or
ignorance of the processes and systems generating the waveforms and pattlerns, require the development
of new pattern recognition methods and, in this regard, the sclf-organizational and perceptual capabilities

displayed by artificial neural network architectures offer considerable promise.

The artificial neural network, largely inspired by developments in neurobiology, is a conputational
paradigm which consists of a network of parallel distributed processing units (i.e., nenrons) which are inter-
connected to one another according to some prescribed topology. Research into artificial neural networks
dates back to the seminal work of McCulloch and Pitts {1] in the 1940s and to the developtent of early
two-layered neuronal models in the 1950s and 1960s, such as the PERCEPTRON proposed by Rosenblatt
(2] and the ADALINE developed by Widrow [3]. However, interest in neural nctwork rescarch waned in the
1970s after Minsky and Papert [4] demonstrated the limitations and restrictions inherent in all the early
two-layered neuronal models. Recently, there has been a resurgence of interest in neural network paradigms
annd connectionist architectures. This renewed interest has largely been engendered as the result of certain
theoretical developments in neural network models and of advances in VLSI technology for the construction

and implementation of massively parallel computational architectures [5,6].

The present study applies a neural network computational model to the recognition and classi-
fication of environmental (i.e., natural), bacterial, and artificial acrosols on the basis of the acrodynamic
particle size distribution. Typical measurements of the aecrosol size distributions of atmospheric acrosols
with an Aerodynamic Particle Size analyzer indicate that there is a considerable variability in the shape of
the particle size spectrum of natural acrosols over a given interval of thne and 1t is this natural temporal
variability in shape that makes it difficult to discriminate airborne contamination from natural acrosols using
conventional pattern recognition techmques. With regard to the latter point, the detection and classification
of sources of contamination from changes in the shape of the background aerosol size distribution is an
important process in the adequate assessment of the safety of the environment. Indeed, within the fields of

applied and environmental biology, of air quality monitoring, and of toxicological research, the health effects
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posed by airborne industrial, bacterial and viral particles depend critically on the ability to 1ecognize, char-
acterize, and classify these particles on the basis of their particle size distribution function. In this paper,
we demonstrate how a neural network model may be applied to recognize and classify the complex shapes
of particle size distributions of a number of environmental, biological, and artificial aerosols assuming an

ignorance of the structural information of the underlying processes generating the aerosols.

The paper is organized as follows. In Section 11, a brief description is provided of the architecture of
the neural network model used in the present study. Then, in Section 111, we review briefly the mathematical
formulation of the back-propagation lcarning algorithm that is utilized to train the network. In Section IV,
weo deseribe the acrosol particle size distribution data and the construction of the training and test data sets.
Computer simulation results and experiments relating to various aspects of network training, classification
performance, fault-tclerance and generalization are presented in Section V. Finally, we discuss our findings

and draw some conclusions in Section VI

II. DESCRIPTION OF NETWORK ARCHITECTURE

The architecture of the neural network used in the present study is illustrated in Fig. 1. The
neural network model is essentially a directed graph of processing units or artificial neurons organized into
three layers. The input layer of the network consists of 48 neurons—each neuron is associated with one of
the 48 aerodynamic particle diameter channels which span the range from 0.5 to 15 um. Indeed, during
norinal operation, each of the neurons of the input layer is externally forced or “clamped” to the value of
the input aerosol size distribution in a particular particle diameter channel. In this respect, the values of
the input neurons are proportional to the probability that the aerosol particle size lies within the particular

size interval.

The output layer of the neural network consists of two neurons whose particular state is used to
encode the class of the aerosol size distribution. In the present application, the neuron output responses (0,1)
and (1,0) are used to represent artificial spherical monodisperse aerosols composed of polystyrene spherical
latex particles of 1- and 3-pum diameters, respectively, whereas the output response (1,1) is used to represent
natural (atmospheric) aerosol size distributions. Consequently, each of the possible classes of aerosol size
distributions is represented by a particular combination of responses of the output neurons. The input
neurons are connected to the output neurons through an intervening layer of hidden neurons by a set of
connections with adjustable (i.¢., adaptive) weights. The connection weights between neurons in the input
and hidden layers and the hidden and output layers can be “tuned” by a learning algorithm in order to encode
the structural features and higher-order correlations in the input patterns (i.e., aerosol size distributions)
that are useful for the detection, identification, and classification of the input. These weights can have both
positive and negative valucs and correspond, respectively, to excitatory and inhibitory connections between

the neurons. Finally, it should Le noted that the ncural network shown in Fig. 1 is feedforward in the sense
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that the signal flow in the connections of the network proceeds unidirectionally from the input to the hidden
layer and from the hidden to the output layer. In other words, the output of a neuron in a given layer is

only connected to the input of the neurons in the subsequent layer.

The structure of a single processing unit or neuron is illustrated in Iig. 2. The output of the
i-th neuron is obtained by first computing the weighted sum of the inputs to the neurons according to the
prescription

SaZZwiij, (1)
J

where p; denotes the output of the j-th neuron and w;; denotes the weight (i.e., interconnection strength)
associated with the connection of the output of the j-th neuron to the input of the i-th neuron. The
sununation in Eq. (1) is over all the inputs to the i-th neuron. The summed output S; is subsequently
subjected to a monotonic sigmoidal transformation which provides a graded response between O (minimum)
and 1 (maximum). Consequently, the output of the i-th neuron is given by

1
T 1+ exp(—7(Si + 89))’

pi = 64(Si) (2)

where S? is the threshold or bias for the i-th neuron and v is the gain of the sigmoid function. The effect of
S% is to shift the sigmoid function to the left (S? > 0) or right (S < 0) along the horizontal axis, and the
effect of v is to modify the shape of the siginoid. The sigmoid function with gain v = 1 and shift S? =0 is
displayed in Fig. 3, where X = 5; and Y = p;. It is important to note that the soft-limiting sigmoid function
serves a threshold device {activation function) for the processing unit and, in this sense, can be considered to
be an approximation of the hard-limiting signum function used in some of the early neural network models.
However, unlike the signum function, the sigmoid function possesses the necessary differentiability for the

application of the back-propagation learning algorithm used for training the neural network.

ITII. BACK-PROPAGATION LEARNING ALGORITHM

The use of a neural network model consists of two basic phases: (1) a training phase and (2)
an operational pliase. The primary purpose of the training phase is to encode the features of the input
patterns presented to the neural network through the proper selection of the interconnection strengths or
weights w;; between the various nenrons of the network. To this purpose, a supervised gradient-descent
learning scheme known as the back-propagation learning algorithm is utilized to train the neural network
model. The back-propagation learning algorithm was developed by Rumelhart ef. al. [7] and is, in essence,
a grneralization of the Widrow-Hofl LMS (least mean square) algorithm [8,9] that was originally formulated

for adaptive signal processing.

The back-propagation learning algorithm is a gradient-descent algorithin in weight space whereby

the output error signals are propagated back through the network in order to modify the weights i the
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direction that results in the largest reduction in the error. Application of the back-propagation rule to the
training of a neural network involves two passes through the network. In the forward pass, « given training
pattern from the training set is presented to the input layer of the network. The signale, generated in
the network by the given training pattern, are propagated forwards through the various neurons and their
connections according to Eqgs. (1) and (2) to produce a response in the neurons of the output layer. In
the backward pass, the product of the discrepancy between the observed and desired output responses and
the derivative of the threshold (sigmoid) function is propagated in reverse through the connections of the
network with the objective of modifying those weights that had a large effect on the output response more

than those that did not.

More specifically, the error signal §; in the i-th output neuron is calculated according to the
prescription

b = (ti — pi) 8, (S:), (3)

where p; denotes the response of the i-th output neuron, t; denotes the desired (i.e., target) response of the
i-th output neuron, and ¢, denotes the first derivative of the threshold function. This output error signal
is then back-propagated to the hidden layer where the hidden error signal 6 for the i-th hidden neuron is

computed as follows:

8 =) bjwi8,(S), 4)
;

where w;; is the weight associated with the connection from the i-th hidden neuron to the j-th output

ncuron. Obviously, the summation over j in Eq. (4) is over all neurons of the output layer.

With the calculation of the error signals as per Egs. (3) and (4), the connection weight w;; between

the i-th hidden neuron and the j-th output neuron is modified according to the prescription
Awi; (k) = '1((1 — w)8;pi + pAwy; (k - 1))’ (6)

where A denotes the “change in”, 1 is the learning rate parameter that governs the speed of convergence of
the algorithm, p is the smoothing parameter (u € [0, 1]), and p; is the response of the i-th hidden ncuron. The
index & in Eq. (6) denotes the number of the iteration cycle. Similarly, the weight change in the connection

between the i-th input neuron and the j-th hidden neuron is given by
Aw;j(k) = r)((l - p)éj'p.- + pAw;; (k- 1)), 6]

where p; is the response of the i-th input neuron. It should be noted that the smoothing parameter u
serves to suppress oscillations in the weight changes, thus permitting the use of larger values for the learning
rate parameter 7. In addition to the weights w;;, the thresholds S¢ also need to be determined. With
regard to this point, it is important to note that these threshold parameters can be determined with the

hack-propagation learning algorithin in exactly the same manner as for the connection weights. It is only
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necessary to itiagine the thresholds 89 as the weights from neurons that always have output values of unity.
In practice, the elements of the training set are cycled through the neural network and the connection
strengths and thresholds are adaptively adjusted with the back-propagation learning algorithm until the
discrepancies between all the observed and desired output responses are reduced to below some prescribed

tolerance for all the input patterns of the training set.

IV. AEROQOSOL SIZE DISTRIBUTION DATA

The data sets used for the present investigation are constructed from aerodynamic particle size
distribution functions (PSDFs) obtained from 11 different aerosol populations. The PSDFs were micasured
with an Aerodynamic Particle Sizer (APS), Model 3300 (I'S] Incorporated) which determines the acrody-
namic diameter of individual aerosol particles by measuring the transit time of the particles between two
spots generated by a laser velocimeter that employs a polarized 2-mW He-Ne laser as the light source. The
APS brings the aerosol sample into an outer accelerating orifice and focuses the sampled acrosol into an inner
nozzle which directs the individual particles through a dual-beam laser formed by splitting a focused laser
beam on the basis of polarization using a calcite plate. The beams are then focused using a cylindrical lens
to produce two flat beams of rectangular cross-section just downstreamn of the nozzle orifice. As the aerosol
particle passes through these two beams, it triggers a pair of electrical pulses whose temporal separation is
accurately measured using a high-speed digital clock. A multi-channel a-cumulator (MCA) is used to record
the transit times ol all the aerosol particles and, at the end of a prescribed sanpling Gine, a licrocomputer
reads each channel of the MCA, translates the channel numbers to aerodynamic particle sizes, and displays
the information as a histogram consisting of 48 size intervals (i.c., bins) spanning the 0.5-15 um acrosol

diameter range.

The aerosol size distributions utilized in the study were obtained from artificial, environmental, and
biological (i.e., bacterial) aerosols. All the aerosols considered were non-volatile under ambient conditions.
The size distributions were classified into 11 ceiegories depending on the source of the acrosol particles
generating the distribution. Integer values of 1 through 11 were assigned to these categories for convenient
reference. A summary of the acrosol size distribution category notation is found in Table I and a brief
des -iption follows. Particle size distributions 1 and 2 correspond to spherical monodisperse polystyrene
latex (PSL) particles at nominal 1- and 3-um diameters and geometric standard deviations (o) of 1.035
and 1.02, respectively. Particle size distribution 3 corresponds to atmospheric aerosols (i.e., background)
composed of a population of aerosol particles of both natural and anthropogenic origin suspended in the
atmosphere. A mixture of equal proportions of 1- and 3-gm PSL particles, of 1-jan PSL particles and
atmospheric aerosols, of 3-pm PSL particles and atmospheric aerosols and, of 1-, 3-pan PSL particles and
atmospheric acrosols provide particle size distributions 4, 5, 6, and 7, respectively. Particle size distribution

8 coincides with 0.6-pzm PSL particles with a geometric standard deviation of 1.05. Finally, particle size
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distributions 9, 10, and 11 correspond to viable rod-shaped aerosolized bacteria Erwinia herbicola (EII)
(25 x 0.5 pm), native Bacillus subtilis var. globigu (BG) (1.5 x 0.5 pm), and “clean” Bacillus sublilus
rar, globigu (1.5 x 0.5 pm). respectively. The latter bacterial particles were obtained from the native BG
by washing once with ultrapure water followed by centrifugation. The EH and BG previde examples of
long-rod and short-rod inhomogeneous bacterial cells, respectively. Furthermore, it should be noted that EH
and BG were acrosolized in the form of liquid suspensions of vegetative ceils and spores, respectively, and

these particles were found to be almost completely dehydrated within a few seconds after aerosolization.

All the aerosol size distributions measured were normalized to take values between 0 and ! before
the v were used as input to the neural network. Particle size distributions 1, 2, and 3 were used to train and
test the network. To this purpose, the PSDFs in each of these three classes were divided equally to form
Pwo sets a set of 25 PSDEFs were randomly selected from cach of the three classes to fo. n the training set
{t e the trainmg set consists of 25 PSIEFs from eacly of the three classes for a total of 75 PSii's) and the
remuaining 25 PSDFs from each of the three classes served as the test set. The aerosol size distributions
from categories 4 to 11 were n1sed (o study the operational properties of the trained neural network and, in
particular, to mvestigate the capability of the trained network to generalize, recognize, and classify PSDFs

for which it has not been trained

V. NEURAL NETWORK EXPERIMENTS

Neural network experiments were carried out using the acrosol data sets described above. The
networks were siinulated in software on a Compaq 386/20 computer with a neural network simulator program
developed by Califormia Scientific Software [10]. The experiments on training of the neural network we,e
performed with the smoothing parameter ¢ = 0.1 and the learning rate parameter n = 1.0, unless oth 'rwise
indicated. ‘The neural network, which consisted of 48 input neurons in the input layer, 2 output neurons in
the output layer, and a variable number of hidden neurons in the hidden layer, was fully interconnected, viz.,
cach neuron in the input laver was connected to every neuron in the hidden iayer and, in turn, each neuron
in the hidden layer was connected to every neuron in the output layer. Fach of the 48 neurons in the input
layer was “clamped” to the value of the acrodynamic particle size distribution in one of the corresponding 48
size intervals or bins. Training proceeds by presenting the PSDFs in the training set to the neural network
and a training cycle will refer to one presentation of ali (75) PSDFs in the training set to the network. The
desired ontput response of the network was chosen so that acrosol size distributions in categouies 1, 2, and 3
gave ontput neuron responses (0,1), (1,0). and (1,1), respectively. These responses identify the three pattern
classes in the training set. The connection strengths (weights) in the neural network were initialized with
random values drawn from a uniform distribution with a range from =1 to 1. Training of the network with
the hack-propagation learning algorithm proceeded until the all output responses were within a tolerance of

10 pereent of the desired responses.
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A set of learning curves which characterize the speed of convergence (i.e., learning speed) of the
back-propagation rule for adjusting the weights of the network was desired. One r alization of a set of
[earning curves (percent of the input/output pairs in the training set corsectly mapped as a function of the
number of training cycles) of the network is shown in Fig. 4 for the specitied number of hidden neurons.
In this figure, the learning curves are plotted for nevral netw. ks with n = 3, 5. 7, 10, and 20 hidden
units. Observe that the learning rates of the networks generally increase with an increase in the number of
hidden units since the use of more hidden units provide a greater flexibility in the network encoding process
Furthermore, although there is a significantly faster learning rate tor the network with 10 hidden neuror -
compared with the network with 3 hidden neurons, this improvement in lesrning rate does not scem to
continnte for networks with more than 10 hidden units. Indeed, the networks with 10 and 20 hidden units
have atmost identical fearning ehavior. The smooth ensemble average learning curves were obtained by
using the average of 20 individual learning curves that correspond to the use of different randomly selocted
initial weight values. The resodts are presented o Fig. 5 for networks with n = 3, 5, and 10 lLidden neurons.
The effect of the learning rate parameter 7 ou the learning behavior of the network is exhibited in Fig. 6.
Here, the number of training cycles required to fully train the network is plotted against the number of
hidden units in the network for two values of the leacning rate p-rameter, namely 7 = 1.0 and 1.5, As
expected, increasing the learning rate parameter results in an improvement in the learning behavior (i e,
less training cycles are required to train the network) for a specified number of hidden units. However, it
is important to emphasize that if 71s chosen too large, the back-propagation algorithm exhibits instability
and fails to converge properly. Also evident i Fig. 6 is the decrease in the learning rate with an inerease in

the number of hidden units in the network.

After the networks were fully traned, it was found that tnput of the PSDFEs 1n the test set to the
networks provided recognition accuracies of 100 percent for all the networks tiained, viz. for networks with
numbers of hidden neurons ranging from 3 to 20. Next, we investigated the effects of noise on the recognition
performance of the neural network. All the following experiments involved neural networks with 20 hidden
unmits. It is important that the network be robust in the sense that slight to moderate perturbations in the
systemn (i.e., degradations in the connection strengths of the fully trained network) should not adversely
affect the recognition performarice. Towards this purpose, consider, for example, the representative result
cahibit don Fig. 7. The figure shows the recognition accuracy of the neural network on the test set after
all the weights in the trained network had been corrupted with zero-mean Gaussian noise with the standara
deviation adjusted to provide the required root-mean-square (R*1S) noise level. The KMS noise level is
defined by the ratio a2 /a? expressed as a praceniage, where 02 and 02 are the varianees in the noise and
signal, respectively. Observe that the recognition performance of the newwork was relatively insensitive to
deviations in all the connection weights up to a RMS noise level of about 20 pereent. Hov' er, after this

noise level the performance of the network deteriorated precipitonsly with the addition of further noise to
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the weights. Furthermore, similar results were obtained when the weights we=2 corrupted with non-Gaussian
noise (e.g.. a noise process drawn from a uniform distribution). Consequently, the neural network model is

relatively fault-tolerant to perturbations in the components of the system.

Fig. 8 exhibits the result of training the neural network with a noise corrupted training set.
This figure shows the recognition performance of the network on the test set after training the network on
a tramnng set corrupted with noise at the specified level. Observe that the trained network achieved an
recognition accuracy of 100 percent for a RMS noise level of up to 10 percent on the training patteruas.
After this noise level, the performance of the network monotonically decreased (albeit, rather slowly) until
it provided a recognition accuracy of 70 percent at the 50 percent RMS noise level. It should be noted
that at these higher levels of noise degradation, the input PSDFs are no longer consistent, with the result
that the network cannot be trained to classify the training set with an accuracy of 100 percent. In fact, it
ix observed in these experiments that the recognition accuracy of the trained network on the test set was
roughly equal to the recognition performance on the training set. Along the same theme, Fig. 9 depicts the
recognition performance of a trained network on the test set that has been degraded with different levels
of noise. Note that this performance curve is remarkably similar to that in Fig. 8. Agam. the recognition
rate of the network remained at 100 percent for up to 10 percent RMS noise level in the test set. Above
this level, the performance gradually decreased until a recognition accuracy of only 40 percent was achieved

55 percent RMS noise level. Along these lines, Figs. 10 and 11 display representative output neuron

at
responses (i.e . activation levels of output neuron 2 versus that of output neuron 1) of the trained network
1o test sets that have been corrupted with RMS noise at the 5 and 25 percent levels, respectively. Observe
that the three categories of PSDFs in the test set produced the expected clustering patterns in the output
response space with the scatter within these clusters increasing with the noise level. In summary, the results
in Figs. 7 to 11 indicate that the recognition performance of the neural network model is reasonably tolerant
1o degradations in the connection weights and to variations of PSDFs in the training and test set. We remark
that the insensitivity of the neural network to these forms of degradations is not surprising since it is the
inherent parallelism and built-in redundancy embodied in the various interconnections of the network that

render this form of computational paradigm so attractive for processing of data involving incomplete and/or

degraded information.

The next series of experiments investigates the ability of the fully trained neural network to form
imeamngful generalizations on acrosol size distributions for which it has never been trained. Specifically, we
are anterested i the ability of the trained network to function as a feature map classifier for a number of
andabeled particle size distributions where the number of categories is unknown a priori. In the following
cxperiments, a neural network with 20 hidden units was trained on the training set and then presented with
a number of PSDFs that it has never “seen”. In Figs. 12 and 13, we show the output network response to

a et consisting of a random mixture of 25 PSDFs from each of categories 1 to 6 for a total of 150 PSDFs.
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Observe that the PSDFs from classes 1, 2, and 3 (i.e., the classes which the network was trained to recognize)
cluster in the expected positions in the output response space. Note that there is no scatter in the responscs
of the network to PSDFs from classes 1 and 2, indicating that the PSDFs from these classes are highly
reproducible. The PSDFs from classes 4, 5 and 6 (i.e., three classes for which the network has not been
trained) yielded clusters of points in the output response space with centroids at (0.55,0.35), (0.35,0.95), and
(1.0.0.5), respectively. It is interesting to note that the trained network seems to have forined meaningful
generalizations from the training examples. In particular, PSDFs from class 4, which are composed of a
superposition of acrosols from classes 1 and 2, are clustered roughly about a point in the output response
space that lies on the line connecting (0,1) (cluster point for PSDF's of class 1) and (1,0) (cluster point for
PSDFs of class 2). A similar statement can be made with respect to the centroids of the clusters for PSDFs
of classes 5 and 6 {(mixture of aerosols from classes 1 and 3 and 2 and 3, respectively) which roughly lie
on the lines connecting the points {0,1) and (1,1) {cluster point for PSDFs of class 3) and (1.0) and {1,1),
respectively. Fig. 14 shows the output response of the neural network to a set comprised of PSDFs from
class 7 which is a mixture of aerosols from classes 1, 2, and 3. The centroid of the cluster in the respouse
space is located at the point (0.84,0.73). Observe that this point lies within the triangle whose vertices are

(0.1), (1,0), and (1,1) which are the centroids of the clusters for PSDFs from classes 1, 2, and 3, respectively.

Next, we study the ability of the trained network to classify bacterial acrosols. Fig. 15 illustrates
the network output response to a data set composed of PSDFs from categories 1, 2, 3, 8, and 9, with cach
category contributing 25 PSDFs. The PSDFs of classes 8 (U.6 pm PSL particles) and 9 (El) produced
clusters in the response space with centroids at (0.38,0.87) and (0.11,0.90), respectively. Only one sample
PSDF from class 9 was incorrectly placed. Next, a data set was constructed from PSDFs from classes 3,
9. 10, and 11 and used as input (o the trained network. The output responses of the network for this data
set are shown in Fig. 16. Observe that the network was able to separate the various classes of PSDEFs and
place them in distinet clusters in the output response space. Indeed, only 2 PSDFs from the data sct were
incorrectly placed to provide a classification accuracy of 98 percent. Of interest is the fact that the network
was able to recognize the difference in the shape of PSDFs between native and “clean” BG. It is hypothesized
that washing the native BG removed extracellular material from the cell wall of the bacteria which resulted
in a subtle alteration in the acrodynamic properties of the cell. This alteration produced a subtle change in
the shape characteristics of the acrodynamic particle size distribution which was recognized by the trained
nearal network. With regard to the latter point, the centroids of the clusters formed from PSDFs of classes

10 (native BG) and [ (“clean™ BG) are located at (0.20,0.95) and (0.60,0.87), respectively,

As a final example, ain experiment was conducted to study the response of the trained network
to an acrosol PSDF that slowly evolves over a given interval of time. Towards this objective, an aerosol of
*elean” BG was slowly sprayed into an aecrosol chamber and the particle size distribution of the evolving

tixture i the chamber was measured every 3 seconds with an APS. A total of 100 PSDEs was micasured
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over a period of 300 seconds and this suite of PSDFs provided a “spectrogram” of the evolving PSDF in the
chamber. A data set was constructed from these 100 PSDFs and 25 PSDFs from category 3. The output
responses of the neural network to this data set are exhibited in Fig. 17. Observe that the PSDFs from class 3
are clustered about the expected position. The responses of the network to the PSDFs of the “spectrogram”
generally displayed an ordered trajectory of points in the response space that is indicative of an evolutionary
behavior. These points eventually clustered about the point (0.60,0.87), which coincides with the centroid of
the response cluster for “clean” BG (cf. Fig. 16). This clustering of points in the response space corresponds
to that portion of the spectrogram where the PSDFs have reached a steady-state in the aerosol chamber. At

this point, the PSDFs no longer change shape as a function of time.

VI. CONCLUSIGNS

In this paper, we have applied a neural network model for the recognition and classification of
a number of aerosol particles (e.g., environmental, bacterial, and artificial) based on their aerodynamic
particle size distribution as measured with an Aerodynamic Particle Size analyzer. It was demonstrated
that a fully interconnected three-layered neural network (48 input neurons, a variable number of hidden
neurons, and 2 output neurons) with nonlinear sigmoid units for thresholding can be trained with the
standard back-propagation learning algorithm using a training set consisting of 25 PSDF's from each of three
classes of aerosols (one atmospheric and two polystyrene latex particle standards). It was found that a
recognitin rate of 100 percent can be obtained for the training set using neural networks with three or more
hidden units and that there was a monotonic increase in the learning rate (viz., a smaller number of passes
through the training data) with an increase in the number of hidden units in the network. However, it is
important to emphasize that there was virtually no increase in the learning times of the networks with more
than 10 hidden neurons. Furthermore, it is interesting to note that the performance of the networks did
not deteriorate when the number of hidden units was increased beyond 10, despite the fact that for these
networks, the number of connection weights that have to be adjusted greatly exceeded the number of training
data. In this respect, the back-propagation rule appears to be stable for underdetermined problems. After
training, the connection weights were frozen at their final values and a further pass through the test data
set consisting of 25 PSDFs from each of the same three classes of aerosols represented in the training set,
vielded a 100 percent recognition rate. Evidently, the trained network has properly encoded the significant
characteristic features in the PSDFs to permit effective recognition and classification of these three aerosol

classes.

Experiments were conducted to study the performance characteristics of the neural nctwork as a
hinetion of the quality of data used for the training set and the test set and of the inclusion of random noise in
the connection strengths of the trained network. Firstly, it was found that the neural network is structurally

robust in the sense that deviations in the connection weights (i.c., up to about 20 percent RMS noise in all
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the weights) did not adversely affect the recognition accuracy of a fully trained network. Consequently, the
neural network paradigm, with its high degree of parallelisin and redundancy in interconnections between
neurons, functions as a very fault-tolerant pattern recognition and classification system. Secondly, it was
found that the neural network was robust with respect to the type and level of noise corrupting the data in
both the training and test sets. In this regard, the neural network was able to perform adequately in the
face of uncertainties introduced as the result of undesirable disturbances in the data. This is in contrast
to all statistical techniques for pattern classification which are invariably affected by noise type and level.
Consequentiy, the neural network model is more suited for classification of signals from systems where one

is confronted with ignorance of the statistical characteristics of the noise corrupting the signals.

After the neural network has been fully trained, it was shown that the network was capable of
forming reliable generalizations to PSDFEs that it has never “seen”. In other words, a properly trained neural
network can be used to rapidly characterize and classify airborne environmental, chemical and biological,
and artificial aerosols with a high accuracy rate. Indeed, it was demonstrated that a ncural network that
was trained to recognize and classify only three categories of aerosols can be used effectively to classify
aerosols from eight other categories for which it has never been trained. 1t was shown that the acrosols
from these eight categories produced separable clusters in the output response space of the trained network.
Consequently. the trained network was shown to be able to group PSDFs of unknown type into similiar
categories for the case where the number of cluster categories was unknown a prior:. Indeed, for a properly
trained neural network, cluster classification accuracies of better than 98 percent were obtained for all eight
aerosol classes utilized. This rather surprising classification performance on unknown PSDFs indicates that
the trained network had properly encoded the characteristic features of the PSDFs of the training set in the
connection strengths and had been able to generalize this encoding to extract characteristic features in the
unknown PSDFs and to nse this information to form appropriate cluster categories for the PSDIEs in the
output response space. lo view of this, a properly trained neural network coupled to an APS provides one

possibility of recognmizing, characterizing, and classifying acrosol particles in real-time.

UNCLASSIFIED




UNCLASSIFIED 12

REFERENCES

1. McCulloch, W. 8. and Pitts, W., “A Logical Calculus of the Ideas Imminent in Nervous Activity”,
Bull. Math. Biophys., Vol. 5, 115-133, 1943.

2. Rosenblatt, F., Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,

Spartan Books, Washington, D. C., 1961.

3. Widrow, B., “Generalization and Information Storage in Networks of Adaline Neurons”, in Self-
Organizing Systems, Yovitz, M.C., Jacobi, G. T. and Goldstein, G. (eds.), Spartan Books, Wash-
ington, D. C., 435-161, 1962.

4. Minsky, M and Papert, S., Perceptrons: An Introduction to Computational Geometry, MIT Press,

Cambridge, MA, 1969.

5. Rumelhart, D. E.,, McClelland, J. L. and the PDP Research Group (eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, MIT Press,

Cambridge, MA, 1986.

6. Rumelhart, D. E., McClelland, J. L. and the PDP Research Group (eds.), Paralle! Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, Volume 2: Psychological and Biological

Models, MIT Press, Cambridge, MA, 1986.

7. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning Internal Representations by Error
Propagation”, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Rumelhart, D. E., McClelland, J. L. and the PDP Research Group (eds.), MIT Press, Cambridge,
MA, 318-362, 1986.

8. Widrow, B. and Hoff, M.E., “Adaptive Switching Circuits”, in IRE WESCON Conv. Rec., pt. 4,
56 -104, 1960.

9. Widrow, B. and Stearns, S. D., Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ,
1985.

10. BRAINMAKER: Users Guide and Reference Manual (3rd Edition), California Scientific Software,
Sierra Madré, CA, 1989.

UNCLASSIFIED

NS



UNCLASSIFIED

TABLE 1

Summary of class notation used for acrosol size distributions.

SR 531

Acrosol particle descriptor

Numerical assignment

PSL particles (1 pm)
PSL particles (3 pn.)
Atmospheric
PSL particles (1 and 3 jim)
PSL particles (1 gm) and atmospheric
PSL particles (3 pm) and atmospheric
PSL particles (1 and 3 gm) and atmospheric
PSL particles (0.6 pm)
Erwinia herbicola (2.5 x 0.5 um)
Native Bacillus subtilus var. globigit (1.5 x 0.5 um)
“(lean” Bacillus subtilus var. globigui (1.5 x 0.5 pum)
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FIGURE |

Schematic of the architecture of a feedforward three-layered neural network.
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FIGURE 2

The components of a single processing unit (neuron).

UNCLASSIFIED

_



UNCLASSIFIED SR 531

1.00 7
;
0.80
0.60 4
>
0.40
;
0.20 -

OOO ‘TTllIIIWIrTl_rTTIIIIIITIIIIIII_]I_TIT_IIIII|Ilr1lT1ﬁj

-5.00 -3.00 -1.00 1.00 3.00 5.00

X

FIGURE 3

The sigmoid function with unit gain that serves as the threshold or activation function for a neuron.
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FIGURE 4

One realization of learning curves for neural networks with 3, 5, 7, 10, and 20 hidden neurons.
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FIGURE 5

Lnsemble average learning curves constructed from 20 individual realizations of learning curves for networks
with 3, 5, and 10 hidden neurons.
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FIGURE 6

Number of training cycles versus the number of hidden units for two values of the learning rate paramcter
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FIGURE 7

Recognition accuracy on the test set versus the RMS level of noise corrupting all weights of a trained network
with 20 hidden units,
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FIGURE 8

Recogmtion performance of a neural network on the test set. The network was trained on the training set
corrupted with a prescribed RMS level of noise.
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FIGURE 9

Recognition performance of a trained neural network on the test set that has been corrupted with the
prescribed RMS level of noise.
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FIGURE 10
Output neural network responses to the test set that has been corrupted at b percent RMS noise level.
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FIGURE 11

Output neural network responses to the test set that has been corrupted at 25 percent RMS noise level.
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FIGURE 12

Output neural network responses to a data set consisting of a mixture of 25 PSDF's from each of categories
1 to 6. This figure only displays the responses of PSDFs in categories 1 to 5.
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FIGURE 13

Output neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
1 to 6. This figure only displays the responses of PSDF's in categories 1, 2, 3, and 6.
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FIGURE 14
Output neural network responses to a data set consisting of a mixture of 25 PSDFs from cach of categorics
1,2, 3, and 7.
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FIGURE 15

Output neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
1,2,3 8 and 9.
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FIGURE 16

Output neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
3.9 10 and 11.
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FIGURE 17
Output neural network responses to a data set consisting of a suite of 100 evolutionary PSDFs corresponding

to the “spectrogram” from the acrosolization of Bacillus subtilus var. globigii in an aerosol chamber and of
25 PSDFs from category 3.
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